Putting n-2 for n in given difference equation,
y(n-2+2) = a x(n-2+1) + b x(n-2+3)
y(n) = a x(n-1) = b x(n+1)
i) Linearity
y1(n) = T {x1(n) = a x1(n-1) + b x1(n+1)
y2(n) = T{x2(n) = a x2(n-1) + b x2(n+1)
y3(n) = T {a1 x1(n) + a2 x2(n)}
= a[a1 x1(n-1) + a2 x2(n-1)] + b[a1 x1(n+1) + a2x2(n+1)]
= a a1x1(n-1) + a a2x2(n-1) + ba1x1(n+1)+ b a2 x2(n+1)
y’3 (n) = a1y1(n) + a2y2(n)
= a1[a x1(n-1) + b x1(n+1)] + a2[a x2(n-1) + b x2(n+1)]
= a a1 x1(n-1) + b a1 x1(n+1) + a a2x2(n-1) + b a2
x2(n+1) Since y3(n) = y’3 (n), the system is linear.
ii) Causality
y(n) depends upon x(n+1), which is future input. Hence the system is non causal.
iii) Time invariance
y(n,k) = T{x(n-k)} = a x(n-1-k) + b x(n+1-k)
y(n,k) = a x(n-k-1) + b x(n-k+1)
Since y(n,k) = y(n-k), the system is time invariant
Comments
Post a Comment