(a) To check linearity
y1(n) = T{x1(n) = n x1(n)
y2(n) = T{x2(n) = n x2(n)
y3(n) = T{a1x1(n) + a2 x2(n)} = n[a1 x1(n) + a2x2(n)] = n a1 x1(n) + n a2x2(n)
and y’3(n) = a1y1(n) + a2y2(n) = a1nx1(n) + a2nx2(n)
Here y3 (n) = y’3(n) Hence this system is linear.
y(n) = T{x(n) = n x(n)y(n,k) = T{x(n-k) = n x(n-k}
y(n-k) = n(n-k) x(n-k)
Since y(n,k) = y(n-k) the system is shift variant.
Comments
Post a Comment