Define linearity and time invariance properties | Y[n] = x2[n-2] & Y[n] = 4x[n] + 6



Linearity Property : A system is said to be linear if superposition theorem applies to that system. If it 

does not satisfy the superposition theorem, then it is said to be a nonlinear system. 

Shift invariant Property: A system is time invariant if the time shift in the input signal results in 

corresponding time shift in the output. A system which does not satisfy the 

above condition is time variant system.


check whether the corresponding systems given are linear and time invariant or not. 

            a. Y[n] = x2[n-2] 

            b. Y[n] = 4x[n] + 6


a. Y[n] = x2[n-2] 

Linearity: 

Y1[n] = x12[n-2]  

Y2[n] = x22[n-2] 


Y3[n] = a1x12[n-2]+a2 x22[n-2] 


Y3 ‘[n] = T[a1x1[n]+a2 x2[n]] 



Y3 ‘[n] = [a1x1[n-2]+a2 x2 [n-2]]2 



Y3 ‘[n] = a12x12[n-2]+a22x22[n-2]+2 a1x1[n-2].a2 x2 [n-2]  



          Y3[n] ≠Y3 ‘[n] It is a non linear system. 

Shift invariant: 

            Y[n,k] = x2[(n-2)-k] 

            Y[n-k] = x2[n-k-2]  

Y[n,k] = Y[n-k] it is shift invariant system. 

 

b. Y[n] = 4x[n] + 6 

Linearity: 

    Y1[n] = 4x1[n] + 6 Y2[n]  = 4x2[n] + 6 Y3[n]

              = aY1[n]+a2 Y2[n] 

              = a1 (4x1[n] + 6)+a2 (4x2[n] + 6) 

    Y3 ‘[n] = T[a1x1[n]+a2 x2[n]] 

                = 4[a1x1[n]+a2 x2[n]] + 6 

   Y3[n] ≠ Y3 ‘[n] . It is Non linear system. 

Shift invariant : 

Y[n,k] = 4x[n-k] + 6  

Y[n-k] = 4x[n-k] + 6 

 Y[n,k] = Y[n-k] it is shift invariant system. 


Comments